
Protocol Mover

AN EXTERNAL PROTOCOL INTERFACE

VERSION 0.60

External Interface and StackSaver © 1990 By
John Raymonds

Introduction:

The files that are included with this
documentation show an example external for
ASCII (non-protocol) transfers. ASCII and the
documentation that follows will get you started.
There will probably be a lot of questions this
first draft does not answer. If you have a
question about the protocol interface you can
find me at: 76174,205 on Compuserve and
D3885 on AppleLink.

The Interface:

When starting either an receive or a send the
terminal or BBS program will call the external
with a newly created ProtoRec data structure.
This will be done until the external returns with
a non-zero value. The external will defined as:

pascal OsErr protocol(message, PRP,
refCon)

int message;
ProtoRecPtr PRP;

long refCon;

message will be either SEND, RECEIVE or
SETPREFS on the first call. On jump backs
the message is should not be used and can be
ignored by the external.

PRP is a pointer to a ProtoRec structure set
up by the communications program for the
external to use. On the first call it will contain
initial values set by application.

refCon is the value setup in the ‘PInf’
resource for accessing the protocol. It may be
used for setting protocol options or for
selecting different protocols that the external
supports.

Possible return values are standard Mac OS
errors with the addition of 128 = transfer has
either aborted or has finished.

The new ProtoRec variables created by the
communications application are shown below.
Initial values are in braces {value}.

mRefIn {Modem input port reference
number for current node}

mRefOut {Modem output port reference
number for current node}

procID {resource ID of the protocol}

This is used by the protocol to reference any
other resources it may need. All PROCs
should be compiled with a resource ID of 1000.
Any other resources your protocol might need
should be number from 1000 to 1099. The
Protocol Mover will renumber all resources as
necessary. To find a resource the external
should add this number to a base value. For
example: If you have a dialog with an ID of
1000 you should reference it as 0+procID.

protoData{0L}

To be used as a handle for the external's
private data. It should be initialized on the first
call and disposed of when the external returns
an error or abort/finish code.

errReason {0L}

Is a short pascal string that describes the last
error condition. This will be used on the fly in
the communications program transfer dialog for
non-fatal errors and in the transfer log for fatal
errors. The easiest way to set this variable is
with a NewString call. newError must be set to
TRUE in order for the communications
program to display and dispose of the
message.

timeOut {timeOut}

Is the maximum time the external should wait
before returning to communications program.

This value may change while the transfer is
occurring depending upon system load.

fileCount {Total number of files to transfer}

For batch receives in terminal mode this will
always be set to one.

filesDone {0}

After each successful transfer the external will
add one to this count until the transfer is
aborted or until filesDone = fileCount. The
exception to this rule is batch receives in
terminal mode. In this case filesDone should
remain zero.

bytesDone {0L}

Number of bytes successfully transfered.
Updated continuously by the external.

bytesTotal {0L}

Total number of bytes transfered by the
external.

startTime {TickCount()}

Time of transfer start.

The following is set up as a bit field:

transMode {mode}

Set to either TERMINALMODE or BBSMODE.
Depending upon the environment the external
may have to act in different ways. For
example: If it is being used to receive files in
the communications program terminal mode
MacBinary files should be

renamed to whatever MacBinary file name they
have. If it is being used in the transfer section
communications program will supply the file
name. transMode will tell the external what it is
being used for.

stopTrans{FALSE}

If this value becomes TRUE the external
should abort the transfer as soon as possible.

carrierLost {FALSE}

If this field becomes true you can assume that
the connection lost carrier. In this case you
should stop sending and receiving data
through the current port.

useMacBinary {useMacBinary}

If this is false MacBinary will not be used at all.
Otherwise smart MacBinary detection should
be used by the external.

newMBName {FALSE}

When receiving a MacBinary file the external
should place the MacBinary name in mbName
and set newMBName to TRUE.

newError {FALSE}

If this becomes true communications program
should use errReason to update the transfer
dialog. After doing so communications
program should dispose of errReason, set it to
0L, and set newError to FALSE. Hint: If using
StackSaver it is wise to immediately call Return
with a zero timeOut value after setting
newError. This would force a return to
communications program which would show
the errReason string and clear newError.

newFile {FALSE}

If this becomes true communications program
should use the information contained in the
structure to update everything for a successful
transfer. After doing so communications

program should set newFile to FALSE.
filesDone will be the index number of the
successfully transfered file. Hint: If using
StackSaver it is wise to immediately call Return
with a zero timeOut value after setting newFile.
This would force a return to communications
program which would take care of updating all
of the user stats for a successful transfer and
clear newFile.

Recovering {FALSE}

The external should set this to TRUE if the
external is either sending or receiving a only
part of a file. This way the communications
program can use the current value contained in
bytesDone as a reference when computing
cps.

Reserved {0}

Do not look at and do not change!

fList[] {the file to transfer}

The FListRec contains information about each
file that has to be transfered.

fName {file path name}

The full or partial path name for the file to be
transfered. fName along with mbName (if
used) will be disposed of by communications
program when the transfer is complete.

mbName {0L, or MacBinary name}

For BBS use only. When uploading a file might
be saved under a name that is different from its
“real” MacBinary name. Hence, the BBS
program can use mbName to keep track of
what the file should really be called. When
downloading the opposite is true.

vRefNum {0, vRefNum}

The volume reference number for the file if is a
full path name, or a working directory reference
number in the case of partial path names.

DirID {0L}

The directory ID of the folder for the file.

FileID {0L}

Not supported yet.

IT CAN BE ASSUMED THAT THE PRP IS
NOT A DEREFERNCED HANDLE THAT
WOULD MOVE BETWEEN CALLS TO THE
EXTERNAL DURING A TRANSFER. IT CAN
ALSO BE ASSUMED THAT THE EXTERNAL
WILL REMAIN LOCKED DOWN BETWEEN
ALL CALLS TO IT!!! ALL STRING HANDLES
SHOULD BE UNLOCKED!

THE STACK SAVER:

typedef struct {
Handle stackData;
long originalSP;
long jumpBack;
long startTime;

} SSaverRec, *SSaverPtr;

/* prototypes for StackSaver */

extern void Return(int timeOut,SSaverPtr
SSP);

extern OsErr JumpBack(int
message,ProtoRecPtr prp,

long refCon,SSaverPtr SSP,OsErr
procPtr());

stackData must be initialized to a handle of
zero length on the first call to the external.
When the external is completely finished with
what it has to do it must dispose of stackData
before returning with a non-zero error code.

The other variables are for StackSaver's
internal use and should not be touched by the
external.

When writing an external you may wish to
observe the stack size by watching how large
stackData becomes when returning to the test
shell. This will give you some idea of the
overhead involved when returning to
communications program. For example: If the
stackData size is about 256 bytes then that
would be similar to two Str255 copies; One for
returning, and one for coming back. Of course

it would be wise to keep this number as small
as possible. If you have a large number of
local variables in the stack frame when Return
is called you might want to try moving Return
elsewhere or possibly using variables located
in protoData rather than on the stack.

StackSaver is presently written for a ‘C’
environment. If you need StackSaver for
pascal please leave me E-Mail. We can work
something out in no time if you are serious
about creating a protocol external in pascal.

GLOBAL WARNING!:

THINK C allows the use of global variables
within code resources. When running in a
multi-node environment and especially when
using StackSaver great care must be taken
with global variables.

Since the global variables will be re-initialized
every time the external is called they should be
thought of as temporary storage places at best.

Any variable that you want to keep around
between JumpBacks must be kept in the
protoData handle of the ProtoRec structure!

Where do I start? (from the application
side):

If you are writing a terminal program you will
have to do very little coding yourself. sample.c
is part of Protocol Mover and is provided as an
example of how to interface with the interface.

utility.c is actually the source to a special
PROC that is around all of the time in the
Transfer Protocols file. The calling method for
your application is shown in sample.c. The
utility PROC does not have to be called until it
returns an error. It can be assumed that it will
finish whatever you tell it to do on the first call.

Besides the calls to the utility PROC shown in
sample.c it is also called by the Protocol Mover
as shown below:

To do a Transfer menu command…

MenuID = HiWord(MenuSelection);
MenuItem = LoWord(MenuSelection);
switch(MenuID) {
case 0:

break;
case AppleID:

DoAppleCmd(MenuItem);
break;

case FileID:
DoFileCmd(MenuItem);
break;

case EditID:
DoEditCmd(MenuItem);
break;

case PortID:
DoPortCmd(MenuItem);
break;

case DataRateID:
DoDataRateCmd(MenuItem);
break;

case BitsID:
DoBitsCmd(MenuItem);
break;

case FlowControlID:
DoFlowControlCmd(MenuItem);
break;

default:
Utility(DOMENU, PMH, MenuSelection);
showTdialog();
break;

}

Notice we do a showTdialog right after the DOMENU call. The code for showTdialog is found in sample.c.

When maintaining the Transfer menus…

Utility(ABLEMENU, PMH, (long) (thePrefs.currentPort != -1));

When building the Transfer menu…

Utility(BUILDTMENU, &PMH,
(((long) TransferID) << 16)+thePrefs.mode);

Note that the Protocol Mover uses a special BUILDTMENU message. This call will give you a full menu in
BBSMODE. Your BBS application (and terminal program) should use BUILDMENU. For a BBS application this
will only give you the Set and Help commands.

When disposing of the Transfer menu…

Utility(DISPOSEMENU, PMH, 0L);
PMH = 0L;
CloseResFile(rRef);

In addition to the Utility calls the other code in sample.c is called from the main event loop…

for (;;) {
doTransPROC();
if (gHasWaitNextEvent) {

if (!WaitNextEvent(everyEvent, &myEvent, 0L, 0L)) {
continue;

}
}
else {

SystemTask();
if (!GetNextEvent(everyEvent, &myEvent)) {

continue;
}

}
MaintainCursor();
if (IsDialogEvent(&myEvent)) {

doTdialog(&myEvent);
}

For a terminal program that is just about all you have to do. If you are writing a BBS program you will have to do
a lot more coding on your own. The best place to start is the utility.c source. Examine and understand what
happens when to send a BUILDTMENU call to it. This will help you with writing the code that lists the transfer
protocols that are available to your users. Next you will want to understand what happens when you send a
DOMENU call. For setting transfer prefs and getting help in BBS mode you can still use the Utility PROC, but
when it comes to creating the file lists for either uploading or downloading you will have to do that yourself.

Utility Call Summary:

message BUILDTMENU, BUILDMENU and BUILDDAMENU

parameter1 address of the ProcMenuHandle

parameter2 long integer (menu ID in hi-word, transfer mode in low-word)

You pass the utility PROC the address of a variable that you want to hold the ProcMenuHandle and it returns with
all of the protocol data filled out in the handle and the transfer menu items added to the menu. The long integer
defines the ID of the Transfer menu. Note that this menu can have items on it already! The protocol functions will
be added on to the end of the existing menu. The mode specifies either TERMINALMODE or BBSMODE.
BUILDDAMENU is identical to BUILDMENU except desk accessory hierarchical menu IDs are.

message ABLEMENU

parameter1 the ProcMenuHandle

parameter2 long integer (TRUE or FALSE)

Given an existing ProcMenuHandle created by BUILDMENU this call will either enable or disable the transfer
menu items.

message DOMENU

parameter1 the ProcMenuHandle

parameter2 the menu selection

Given an existing ProcMenuHandle created by BUILDMENU this call will take a menu selection long word and
find the protocol function to execute. It will handle Set Receive Folder and Help calls in their entirety. For actual
transfers it will set up the transIndex, transMessage, transRefCon, and transData fields of the ProcMenuHandle.
It will be up to the application to check if transData was actually created and to take care of the transfer itself.

message DISPOSEPREC

parameter1 the ProcMenuHandle

parameter2 zero (long integer)

When a transfer is finished this call is used to dispose of the transData created by DOMENU.

message DISPOSEMENU

parameter1 the ProcMenuHandle

parameter2 zero (long integer)

When the transfer menu items are no longer needed this call will dispose of both the items in the menu and the
ProcMenuHandle. Note that this call only disposes the transfer items in the menu and not the actual menu itself.

Notes:

Why have a transfer menu in BBS mode? So you can set the BBS preferences for the protocols that need them
and still have the help menu available. You see, each protocol that handles prefs calls will keep two sets of prefs
in a DATA resource. One for the Terminal Mode and the other for the BBS Mode. (See the ASCII example) This
way someone could change the prefs when he is in Terminal Mode and not worry about effecting the operation of
his BBS system. It would of course also be nice to have the help for all of the protocols available in BBS
mode....it is a quick, easy, and cheap method of checking versions, author's addresses, shareware costs, etc.

Well, you will pretty much be building your own transfer menu for your BBS. How you want to handle that is up to
you. See what happens in utility.c when it builds a

Terminal Mode menu....concentrate on the two calls to AddProcSubs when they are called with the mask of
CANSEN+CANBSEN for sending and CANREC+CANBREC for receiving. This goes through all of the PInf
resources and picks out the protocols that it can use. hCount is used to count the functions related to the same
PROC ID. If it's greater than one I need a hierarchical menu, otherwise I can get away without one.

Then you can look at what happens on a DOMENU call. This searches through the structure built by
BUILDMENU to find a matching PInf for the menu item.

There will be some work to do on your side, but when it's done you will have a killer transfer protocol system.

You need BUILDMENU even in BBS mode. You are right in that the user will never see it....that's why the transfer
protocols (send and receive) will not be listed, but the SYSOP needs to set protocol prefs for BBS mode and get
information about each protocol.

